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Abstract
Visual analytics tools are of paramount importance in handling high-dimensional datasets such as those in our turbine
performance assessment. Conventional tools such as RadViz have been used in 2D exploratory data analysis. However, with
the increase in dataset size and dimensionality, the clumping of projected data points toward the origin in RadViz causes low
space utilization, which largely degenerates the visibility of the feature characteristics. In this study, to better evaluate the
hidden patterns in the center region, we propose a new focus+context distortion approach, termed PolarViz, to manipulate
the radial distribution of data points. We derive radial equalization to automatically spread out the frequency, and radial
specification to shape the distribution based on user’s requirement. Computational experiments have been conducted on two
datasets including a benchmark dataset and a turbine performance simulation data. The performance of the proposed algorithm
as well as other methods for solving the clumping problem in both data space and image space are illustrated and compared,
and the pros and cons are analyzed. Moreover, a user study was conducted to assess the performance of the proposed method.

Keywords PolarViz · Customized radial distortion · Focus+context · Discriminating visualization · High-dimensional data
analytics · Turbine performance assessment

1 Introduction

In recent years, data visualization has raised great research
interest in the field of visual analytics as it provides an
intuitive way to display large datasets, especially for high-
dimensional datasets. Visualization of the high-dimensional
dataset can be considered as a problemof how tomap the data
to a lower dimension in a useful way. A suitable data pro-
jection method enables one to observe and detect underlying
data patterns and distributions in exploratory data analysis.
A great deal of efforts have been devoted to this topic and
various visualization methods have been proposed based on
specific application requirements [20,21]. One of the popular
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methods in high-dimensional data exploration and analysis
is the radial visualization, such as RadViz [11]. However,
with the increase in dimensionality, data points tend to clump
toward the center ofRadViz, known as clumping problem [6].
The patterns and features are thus buried in the clumping data
points, so they cannot be detected by visualization functions
such as query result display and outlier detection in our tur-
bine performance assessment.

In this paper, we propose a focus+context visualiza-
tion distortion techniques to ease the clumping problem and
increase space utilization in RadViz. The clumping problem
was analyzed before and one example is the RadViz with sig-
moid function [26]. However, the method changes the values
of the original dataset and destroys the cluster information
of the dataset.

Our method plots high-dimensional data points into Rad-
Viz and analyzes the clumping problem by using a polar
coordinate system insteadof theCartesian coordinate system.
Based on the new representation, the radial distance shows
its potential to alleviate the clumping problem of RadViz.
Hence, we propose the idea on the modification of the radial
distance distribution. For the distribution of the radial dis-
tance, we observe a similar problem in the image processing
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field. For images with low contrast, it seems that the intensity
of pixels is clumping into a small range. Hence, similar to
histogram-based operations in image processing, we propose
a series of radial operations to manipulate the radius of each
point.

This work is an improved and extended version of our pre-
viouswork [38].Besides the original contributions,which are
the proposed radial equalization operation and radial spec-
ification operation, we extend the previous version mainly
in three aspects. Firstly, we generalize the radial operations
by considering the cumulative distribution functions (CDF)
and propose a novel method termed PolarViz. Secondly, to
better assess the proposedmethod, the study on similarmeth-
ods and direct comparisons with them are conducted in this
work. Specifically, we discuss other distortion methods in
Sect. 2 and the technical details of these methods in Sect. 3.2.
Then PolarViz is compared with existing methods in Sect. 6
from two perspectives: data space and image space, whereas
in the previous work, only the comparison among different
radial operations was done. The benchmark dataset is used
in the experimental comparison for better understanding in
this work. Thirdly, a user study in Sect. 7 is added to evaluate
the usability of our method.

The main contributions of this paper are:

1. we present the RadViz by using a polar coordinate sys-
tem. The clumping problem of RadViz can be clearly
analyzed and visualized in the polar coordinate system;

2. we define the radial operations including radial equal-
ization and radial specification for the radial distance of
RadViz in order to adjust the RadViz plots;

3. we generalize the radial operations by considering the
cumulative distribution function (CDF). Any modifica-
tion on the CDF can be visualized in the new view.

The rest of the paper is organized as follows. Related
work is reviewed in Sect. 2. Section 3 discusses the rele-
vant concepts of RadViz and the clumping problem in the
Cartesian coordinate system, and then, Sect. 4 discusses our
new approach for the polar coordinate system. The detailed
methodology is described in Sect. 5 including the radial
operations in Sect. 5.1 and the generalization in Sect. 5.2.
Applications using the proposed method for data analysis
and comparisons with other methods are discussed in Sect. 6.
User study to evaluate the usability of the proposed method
is described in Sect. 7. Finally, technical discussion and con-
clusion are presented in Sect. 8.

2 Related work

Our work is a distortion-oriented approach to deal with
the clumping problem in RadViz which is used on high-

dimensional data visualization. Hence, the related work is
divided into three parts: Dimensionality reduction, RadViz,
and distortion-oriented approaches.

2.1 Dimensionality reduction

Visual analysis on the high-dimensional dataset is a big
challenge that is known as ‘curse of dimensionality’ [6].
To visualize high-dimensional dataset, one straightforward
choice is to implement dimensionality projection techniques
and then plot them in a lower dimension, while the other
is to display all the dimensionality information at one
time.

Dimensionality reduction that maps high-dimensional
data point onto low-dimensional space (two-dimension or
three-dimension) is crucial in the high-dimensional informa-
tion visualization. There are two distinct groups in dimen-
sionality reduction depending on the projection methods:
linear projection and nonlinear projection. The most popular
linear dimensionality reduction methods include Principal
Component Analysis [28], and Linear Discriminate Anal-
ysis [9]. While for the nonlinear case, Multidimensional
Scaling [18], Isomap [37], and Local Linear Embedding [30]
are well-known methods adopted to reduce dimensionality.
Researchers in the field of machine learning and artificial
neural network have also developed methods to present data
in low dimensions, such as t-SNE [17,22]. Besides these
dimensionality reduction techniques, another choice is to use
some visual mapping approaches to draw high-dimensional
dataset onto low-dimension plots. Famous methods include
scatter plot matrix, parallel coordinates plotting [14], and
heatmap [29]. Radial visualizations that map data in a cir-
cular fashion are becoming an increasingly popular method
in high-dimensional information visualization research. A
historical review of radial visualization can be found in [7].
Among various radial visualization methods, RadViz [11] is
an emerging leader in recent years.

2.2 RadViz

In RadViz, all the dimensionalities of a data point in data
space contribute to the final position of the projected data
point in the 2D image space. In the basic RadViz, dimen-
sional anchors (DAs) are evenly spaced around the perimeter
of a circle. One end of a spring is attached to each dimen-
sional anchor, while the other end is attached to a certain
data point. The number of springs is equal to the data
dimensionality. The equilibrium location of this data point
in the RadViz spring system is where the sum of each
spring force equals to zero. RadViz is well explored in
terms of cluster representation, outlier detection and so on.
The main challenge for RadViz is the placement of dimen-
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sional anchors. Various algorithms have been proposed to
place dimensional anchors to obtain desired configurations,
followed by quality measurement methods for justifica-
tion [1,5,32,33,35].

Some researchers focus on designing 3D RadViz with the
purpose of getting a better configuration [2,13,25]. In [2],
they used the mean value of each dimension as the third
coordinate value, while in [25], the Euclidean distance of
the projected data point to the origin in the high-dimensional
space was used as the third coordinate. The 3D RadViz visu-
alization scheme incorporates a third dimension to visualize
the shape and convergence by using the distance to a refer-
ence hyper-plane. Their 3D RadViz can effectively visualize
the Pareto-optimal fronts with more than three objectives
and also can be used to evaluate the performance of an algo-
rithm.

2.3 Distortion-oriented approaches

In the clumping problem, large amount of data points are
crowded into a small region. To provide a detailed view of
this crowded data region while retaining surrounding con-
text to help keep analysts oriented is exactly a focus+context
method [10,27]. Distortion is one of the focus+context tech-
niques that can transform the display region so that focused
regions are magnified, while contextual regions are demag-
nified.

The application of distortion-oriented techniques to data
visualization has a relatively long history. The problem arises
when using the small display window to view the large infor-
mation systems [19]. This is quite similar to the clumping
problem inRadViz.Trials of the distortion techniques include
the polyfocal display [16], bifocal display [36], perspective
wall [23], andgraphical fish-eyeviews [34].Among them, the
fish-eye distortion is the most commonly used method which
follows the evidence in cameras with wide fields-of-view in
computer vision applications. Large amount polynomial and
non-polynomial models of fish-eye radial distortion are pro-
posed to simulate the distortion [12]. The detail can be found
in the survey papers [12,19] and reference therein.

The main difference between our work and previous
distortion-oriented approaches is that in our method, the user
can control the transformation function while others fix the
transformation function, though they provide other interac-
tions.

In a more general view, the clumping problem can
be treated as a visual clutter. Besides distortion-oriented
approaches, other clutter reduction methods include sam-
pling [4], filtering, change point size, and so on as mentioned
in the survey paper [8]. We did not enclose the comparison
between our distortion method and other clutter reduction
methods as beyond our purpose.

3 Main problems to be solved

3.1 Clumping problem in RadViz

For dataset D = (
d1, . . . , d j , . . . , dm

)
containing m data

points, each data point d j = (
d1, j , . . . , di, j , . . . , dn, j

)
has

n-dimensionalities. Let d
′
i, j be the normalization result for

di, j . The normalization equation for di, j is

d
′
i, j = di, j − mini

maxi − mini
(1)

where mini = min
{
di, j

}
and maxi = max

{
di, j

}
, ∀ j .

Then the basic RadViz with evenly distributed DAs can
be expressed as:

R =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1, j =
∑n

i=1

(
d

′
i, j · cos (θi )

)

∑n
i=1 d

′
i, j

x2, j =
∑n

i=1

(
d

′
i, j · sin (θi )

)

∑n
i=1 d

′
i, j

. (2)

where θi refers to the orientation of the i th DA.
The mapping in Eq. 2 is nonlinear. Due to that, an effect

that data points tend to clutter in the center of the plotting
exists and is often known as the clumping problem as shown
in Fig. 1. RadViz’s clumping problem was first observed
and analyzed in [6], and the effect of diametrically opposed
dimensional anchors under the spring-force analogy is con-
sidered as the main reason.

To ease the clumping effect by changing the order of DAs
is an inefficient way. Firstly, for general cases, the clumping
effect exists under every configuration. Secondly, the explo-
ration for the optimal result by exhaustively searching all
possible configurations is very time-consuming with a com-
plexity of O(n!) and practically intractable for not too large
n. More importantly, the order of DAs (as well as the ori-
entation of DAs) is often used by researchers to get a better
plotting with more information [1]. Hence, it is highly inef-

Fig. 1 We demonstrate the clumping effect by plotting the distribution
of 100,000 uniformly sampling 5-dimensional and 50-dimensional data
points. The 3D view of the distribution shows that most data points are
clumped in the center area in 50D case (b) than that in 5D case (a)
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ficient to change the order of DAs to tackle the clumping
effect.

3.2 Previous approach for clumping problem

The clumping problem in RadViz was analyzed in [26]. They
proposed a filtering mechanism to cancel the forces in Rad-
Viz and reduce clutter in the center region. Their approach
was used for visualization of multi-task and multi-label clas-
sification, and applications with validation were given.

The filtering mechanism is a sigmoid weighting method.
The filter operates by multiplying each dimension value d

′
i, j

with a zero-one normalized sigmoid function

σ̂ (x, s, t) =
⎧
⎨

⎩

σ (x) − σ (0)

σ (1) − σ (0)
if σ (1) �= σ (0) ,

1 otherwise,
(3)

with

σ (x) = 1

1 + exp (−s (x + t))
.

Let dsj be the data point after sigmoid function. Then

the original data point d
′
j will be changed to dsj = d

′
j ·

σ̂
(
d

′
i, j , s, t

)
. The control parameters s and t are used to build

the threshold. Finally, following the expression in Eq. 2, the
RadViz with sigmoid function Rs can be expressed as:

Rs =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1, j =
∑n

i=1

(
dsi, j · cos (θi )

)

∑n
i=1 d

s
i, j

x2, j =
∑n

i=1

(
dsi, j · sin (θi )

)

∑n
i=1 d

s
i, j

. (4)

However, as the high-dimensional data points are changed
and the projection is nonlinear, the obtained RadViz plot-
ting cannot be estimated. An example is shown in Fig. 2. In
Fig. 2a, c, two data points A and B are plotted in RadViz
at the same location and their dimension values are labeled.
After the sigmoidweighting operation, data point A ismoved
toward the circle farther than data point B. For data point
A, the variance of each dimension is higher than that of
data point B. Sigmoid weighting function has less influence
on higher values while reduces lower values significantly.
Hence, it is obvious that the cluster information of original
high-dimensional dataset will be destroyed. The experiment
results when handling benchmark dataset and our engine-
related datasets in Sect. 6 also show this drawback of sigmoid
function.

Distortion methods operated in the image space can be
used to ease the clumping problem inRadViz, though they are
not designed for this purpose. Fish-eye distortion designed

Fig. 2 Data points A and B have the same location in RadViz as shown
in (a) and (c). However, after the sigmoid weighting operation, the
obtained results are quite different as shown in (b) and (d)

upon the observation from fish-eye camera lens is the most
commonly used distortion method, and we take the graphical
fish-eye views (GFV) [34] and fish-eye transform (FET) [3]
as examples. The transformation functions of these twometh-
ods are displayed as follows:

TGFV = (1 + λ) x

λx + 1
, TFET = ln (1 + λx)

ln (1 + λ)
(5)

where distortion factorλ controls the amount of the distortion
and x is the distance from a point under consideration to the
point of focus. x is a normalized distance which can have a
value between 0 and 1. To better illustrate their difference, we
plot two transformation functions under different distortion
factors in Fig. 3.

The distortion model in each distortion method is fixed.
Though the user can change the distortion factor and inter-
actively select the focus, the user cannot modify the trans-
formation function on data distribution. Compared with our
proposed method in which the user can change the trans-
formation model according to the data distribution, the
difference is significant.

4 Proposed approach

4.1 Formulation in polar coordinate

As RadViz is a radial configuration, the projected data points
can also be presented in the polar coordinate system. We use
radial distance r to present the radial coordinate and orienta-
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Fig. 3 Transformation functions of GFV and FET under different dis-
tortion factors

tion θ to present the angular coordinate. Then the data point
R

(
x1, j , x2, j

)
in Cartesian coordinates can be converted to

R
(
r j , θ j

)
in the polar coordinates with 0 ≤ r j ≤ 1 and θ j

in the interval (−π, π ] by:

R =
⎧
⎨

⎩
r j =

√
x21, j + x22, j

θ j = atan2
(
x2, j , x1, j

), (6)

where atan2 (y, x) is defined as

atan2 (y, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan (y/x) if x > 0

arctan (y/x) + π if x < 0 y ≥ 0

arctan (y/x) − π if x < 0 y < 0

π/2 if x = 0 y > 0

−π/2 if x = 0 y < 0

undefined if x = 0 y = 0

.

(7)

The orientation θ j of a data point in RadViz indicates the
dimension in which the original high-dimensional data point
has larger deviation.Meanwhile, the radial distance r j shows
the relative extent of the deviation. RadViz is designed not
for numerical analysis but to gain insights from the plotting.
Users can have an overall understanding on the whole dataset
in the initial exploration, and then they may know where and
how to conduct further numerical analysis.

4.2 Visual analytics in polar coordinate

The clumping problem can be further explained by consider-
ing the radial distance of each projected data points in image

Fig. 4 The average distance of each point to the origin in the dis-
play decreases as the dimensionality increases in RadViz, as shown
in (a). The plot also includes the average distance μ ± one standard
deviation σ (dashed lines). The graphics in (b) shows line histograms
of the distances plotting 10–500-dimensional uniformly generated ran-
dom dataset. The clumping effect becomes severe as the dimensionality
increases [31]

space. The average radial distance μ and the standard devi-
ation σ can be expressed as:

μ =
∑m

j=1 r j

m
, σ =

√∑m
j=1

(
r j − μ

)2

m
, (8)

where m is the amount of data points.
Firstly, how μ and σ change under different dimensional-

ity are explored. The average radial distance μ, μ + σ , and
μ − σ when plotting datasets with different dimensionality
are illustrated in Fig. 4a by considering the maximum range
as one unit. The average distances decrease as the dimen-
sionality increases in RadViz. This is one strong illustration
to show the clumping effect. Secondly, the distributions of
distances to the origin under different dimensionality are
also plotted in Fig. 4b. As the dimensionality increases, it
can be seen that the peak of the plot is skewing to the left,
which means that more data points are clumping toward the
center. Besides the analysis in Fig. 4a, b, numerical details
including the average distance μ, the standard deviation σ ,
and μ + 3σ are listed in Table 1. The percentage of data
points located in the range of [0, μ + 3σ) is very steady and
slightly increasing as the dimensionality increases. However,
we should notice the significant decrease in theμ+3σ value.
When plotting the 50D dataset, around 99.4% data points in
the uniformly distributed random dataset are plotted in the
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Table 1 Numerical analysis on the clumping effect

n μ σ μ + 3σ %

10 0.168 0.091 0.442 99.301

20 0.117 0.062 0.304 99.356

50 0.073 0.039 0.189 99.381

100 0.051 0.027 0.132 99.429

200 0.036 0.019 0.093 99.403

500 0.023 0.012 0.059 99.442

The average distanceμ, the standard deviationσ , and value ofμ+3σ for
different dimensionalities n are listed. The last column is the percentage
of data points that located in the range of [0, μ + 3σ). Though there is
a significant decrease in μ + 3σ , the percentage is steady

range of [0, μ + 3σ). When it comes to 500D dataset, the
range that covers around 99.4% data points is only 0.059.

According to the analysis in Fig. 4 and Table 1, the clump-
ing problem of RadViz R(r , θ) can be clearly expressed by
using the radial distance r , but not the orientation θ . Hence,
regarding the clumping problem of RadViz, we can convert
it to how to handle the radial distance r in polar coordinate
system. Based on this hypothesis, we consider the operations
on r to ease the clumping problem in RadViz while keeping
the orientation θ unchanged. We come to the ideas on the
modification of r .

Change the distribution of radial distance r . This idea is
motivated by one observation: the distance distribution in
Fig. 4b is similar to the intensity histogram of a low-contrast
image. In the image processing field, histogram equaliza-
tion is widely used to solve this problem [15]. Hence, a
straightforward and interesting idea is to use the histogram
equalization aswell as other histogramoperations (histogram
specification, histogram local equalization, and so on) to
solve the clumping problem by manipulating the projected
data points distribution in the basic RadViz. The work in [39]
also used probability distribution histogram to enhance visu-
alization. Their method extends a dimension to multiple new
dimensions based on the histogram, and finds the optimal
placement of dimension anchors for good visual clustering.
In comparison, we manipulate the distribution of data points
with the histogram. Without creating new dimensions and
reordering DAs, our method allows a more intuitive interpre-
tation of the layout. The detailed methodology is described
in Sect. 5.1 and then generalized in Sect. 5.2.

5 Detailedmethods

5.1 Radial operations

After projecting high-dimensional data points into RadViz
in the polar coordinate system, the radial distance r j of data
point d

′
j will be modified according to the new distribu-

tion, while the polar angle θ j remains unchanged. We define
our proposed methods as radial operations, including radial
equalization (Sect. 5.1.1), radial specification (Sect. 5.1.2),
radial movement (Sect. 5.1.3), and radial local equalization
(Sect. 5.1.4).

5.1.1 Radial equalization

We propose a radial equalization technique here by combin-
ing histogram equalization and basic RadViz. For the RadViz
R (θ, r) in the polar coordinate system, the orientation θ is
preserved. The distribution of the radius r of all projected
data points is shown in the histogram, and then a histogram
equalization method is implemented to manipulate the radial
distribution.

The pixel values of an image are discrete in the range of
[0, 255]. However, in basic RadViz, when using the distance
to the origin as the criteria to plot a histogram, the values
are continuous. Hence, firstly, we need to specify the bins
to discretize the distance values. The polar coordinate sys-
tem is adopted to represent the basic RadViz in which the
distance value can be obtained directly. For a n-dimensional
data point d j in dataset D, its corresponding projected data
point in polar coordinate is R(r j , θ j ). The whole distance
range ([0, 1]) is digitized into L bins ({H0, H1, · · · , HL−1}).
L is set as 1000 in this paper. Let hk denotes the total number
of projected data points whose r j are located in the range of
[Hk, Hk+1), then the probability density function (PDF) is

p (Hk) = hk
m

, 0 ≤ k < L, (9)

wherem is the number of data points in dataset D. The cumu-
lative distribution function (CDF) is defined as

c (Hk) =
k∑

0

p (Hk) , 0 ≤ k < L. (10)

Thus the transform function of histogram equalization T (x)
can be defined as

Tequal (Hk) = H0 + (HL−i − H0) · c (Hk) . (11)

Suppose R
′ = {R′

j (r
′
j , θ j )} is defined as the RadViz with

equalized radial distance r j , then

R
′ =

{
r

′
j = Tequal(r j )

θ j = atan2
(
x2, j , x1, j

) . (12)

The equalization process is described in Algorithm 1.
To better visualize the proposed algorithm, we design a
dataset with four clusters (‘red,’ ‘green,’ ‘blue,’ and ‘pur-
ple’) as shown in Fig. 5a. For this synthetic example that
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Algorithm 1 Radial Equalization
1: Dataset D = (d1, · · · , dm);
2: Normalize D to get D

′ = (d
′
1, · · · , d

′
m);

3: Plot D
′
in RadViz R(r , θ);

4: Set maximum histogram level L;
5: Calculate histogram H by only considering r ;
6: Histogram equalization: H

′ = Tequal (H);
7: Calculate the corresponding distance r

′
using H

′
;

8: Calculate the new RadViz R
′
(r

′
, θ);

9: Plot R
′
(r

′
, θ);

Fig. 5 a An example with data points located near the circle edge;
b RadViz plotting after radial equalization. The histogram of original
RadViz is plotted in (c). After histogram equalization, the histogram is
plotted in (d)

cannot be handled by stretching, radial equalization method
is used to ease the clumping and increase the space utiliza-
tion. Figure 5b illustrates the result after employing radial
equalization method. The distance histograms of Fig. 5a, b
are plotted in Fig. 5c, d, respectively.

Radial equalization can automatically calculate the trans-
formation function to reshape the distribution. This eases the
burden of users. In some cases, however, the configuration
obtained by the radial equalization may not be as desired by
the users and the original patterns may be destroyed. The
radial specification can address this issue, which allows the
user to specify a histogram distribution. By employing these
techniques, users can see a specific part of the dataset and
explore the patterns or features.

5.1.2 Radial specification

The radial specification technique accepts a user-specified
histogram distribution as an input to reshape the RadViz.
When the clustering of projected data points is not clear
or users have special requirements on the distribution, the
radial specification can generate a required configuration.
The dataset in Fig. 5a is again used here as an example to
show the radial specification results. In Fig. 6c, a specified
histogram is given and the corresponding plotting is illus-
trated in Fig. 6b. Comparedwith the radial equalization result
in Fig. 5b, which plots clusters together, the radial specifica-
tion results in Fig. 6b show the pattern in a visually clearer
way.

The advantage of the radial specification is that it displays
the data points in RadViz exactly as the user’s desire, and the
radial specification operationwill not destroy the relative dis-
tance of points to the origin. Let H

′
denotes the user-specified

histogram and c
′
(H) be the corresponding CDF. Then the

specification process can be described in Algorithm 2. Com-
pared with the radial equalization operation in Algorithm 1,
the radial equalization is a special case of radial specification
by using a uniform specified histogram as user input.

5.1.3 Radial movement

Besides bringing in a new histogram, the user also can edit
the current histogram. Radial movement operation allows
the user to select a range of bars in the histogram, and move
the selected bars to another location. No collision with other
bars is allowed during this movement in order to preserve the
relative relationship. Based on the histogram in Fig. 5c, the
middle cluster is selected andmoved to the position of around
the 400th bin, and the result is shown in Fig. 7c. With this
modified histogram, the original RadViz in Fig. 5a is changed
into Fig. 7a. As shown, cluster ‘green’ is now separated from
cluster ‘red’ via the radial movement.

Algorithm 2 Radial Specification
1: Dataset D = (d1, · · · , dm);
2: Normalize D to get D

′ = (d
′
1, · · · , d

′
m);

3: Plot D
′
in RadViz R(r , θ);

4: Set maximum histogram level L;
5: Calculate histogram H and the CDF c(H) by only considering r for

the original RadViz;
6: Calculate the CDF c

′
(H

′
) for the user specified histogram;

7: Find the histogram level H
′
j for which c(Hi ) = c

′
(H

′
j );

8: Then the histogram specification transformation function: H
′
j =

Tspeci f y(Hi );
9: Calculate the corresponding distance r

′
using H

′
;

10: Calculate the new RadViz R
′
(r

′
, θ);

11: Plot R
′
(r

′
, θ);
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Fig. 6 a An example with data points located near the circle edge; b
after radial specification, the RadViz is illustrated. The histogram in (c)
is user specified. After radial specification, the histogram is plotted in
(d)

5.1.4 Radial local equalization

Radial local equalization is conducted in the histogram by
selecting a partial range and then implementing radial equal-
ization in this range only. This operation is used to increase
local contrast. As the example shown in Fig. 5a, after radial
movement, we implement radial local equalization on cluster
‘green’ to increase the local contrast. The range [100, 650] is
selected for local equalization. The resulting histogram and
RadViz plotting are shown in Fig. 7b, d, respectively.

5.2 PolarViz

The proposed histogram-based radial operations in the pre-
vious four subsections can flexibly control the radial distri-
bution by importing specified distribution or editing current
distribution or both. Although these operations are defined in
the histogram, the CDF is used for calculation. All the opera-
tions can be treated as the matching between the CDF before
transformation and the CDF after transformation. Hence, we
can generalize the radial operation by considering the match-
ing of different CDFs. Let c(H) be the CDF of the current
RadViz while c

′
(H) being the new CDF, then the histogram

level H
′
j in c

′
(H) for which c(Hi ) = c

′
(H

′
j ) is found. The

Fig. 7 a The RadViz plotting after radial movement; b the RadViz plot-
ting after radial local equalization. After radial movement, the obtained
histogram is plotted in (c). After radial local equalization, the obtained
histogram is plotted in (d)

result of this matching is the generalized radial transforma-
tion function.

Based on this, we propose the PolarViz plotting which
can be treated as a series of radial operations to modify the
radial distribution of RadViz. Let T (·) be the operator of
the generalized radial distribution transformation, then the
PolarViz Rpolar can be expressed as

Rpolar =
{
r pj = T

(
r j

)

θ
p
j = θ j = atan2

(
x2, j , x1, j

)
.

(13)

6 Comparative studies

The comparison with other methods that can be used to solve
the clumping problem is conducted in this section. As the
clumping problem is formed during the projection from data
space to image space, the comparative studies are divided
into two parts: comparison with methods operated in the data
space (Sect. 6.1) and comparison with methods operated in
the image space (Sect. 6.2).

For the methods operated in the data space, we execute
the Ono’s method [26] in which the data point in the high-
dimensional space is filtered by a sigmoid function. In the
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Fig. 8 We color clusters and use different symbols for different query-
related data points. The original result using basic RadViz (RV ) is
shown in (a), while radial equalization result is shown in (b). The result

of the RadVizwith sigmoid function (Rs ) is illustrated in (c). The results
of two distortion methods, GFV and FET, are illustrated in (d) and (e),
respectively. In the end, the proposed PolarViz (Rpolar) is shown in (f)

experiment, we set the parameter of the RadViz with sigmoid
function (Rs) with s = 15 and t = −0.5.

For the methods operated in the image space, distortion
methods for radial layout (i.e., GFV [34] and FET [3]) are
implemented for comparison. For GFV, we set λGFV to 9
while setting λFET for FET to 7 in our experiment. The val-
ues of λGFV and λFET can be changed as well as the s and t
for Rs .

Two datasets are used in the comparison experiment. The
first one is the four-dimensional dataset ‘IRIS’ in which three
clusters are involved, while the second dataset is a simulation
dataset generated by the EngineSim. The EngineSim devel-
oped by NASA [24] is a turbine engine simulator used in our
project to assess the performance of engine. We designed

3444 input data points that have 16 parameters for the Turbo
Fun engine simulator and then obtained 3444 output data
points. The 3444 output data points with 38 dimensionalities
are used here.

With these two datasets, we aim to visualize the center
region of the views after projection into image space. The
center point is padded with zero value for each dimension
and few nearest data points are highlighted with different
symbols. Due to the clumping problem, these points are hard
to view in the basic RadViz plot. Different methods are com-
pared at this stage to provide a detailed view of the center
region while retaining surrounding context to help keep ana-
lysts oriented [10].
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Fig. 9 a The position difference of same data point is plotted in Rs
(Fig. 8c) and basic RadViz RV (Fig. 8a). b The attribute values vari-
ance of a data point is plotted in Rs . c The ratio of the largest attribute
value to the mean attribute value is plotted in Rs . d The position differ-

ence of same data point is plotted in Rpolar (Fig. 8f) and basic RadViz
RV (Fig. 8a). e The attribute values variance of a data point is plotted
in the PolarViz (Rpolar). f The ratio of the largest attribute value to the
mean attribute value is plotted in the PolarViz (Rpolar)

6.1 RadViz with sigmoid function

6.1.1 Iris

As the filter in Rs is nonlinear and the projection method
in RadViz is also nonlinear, the result view of Rs will have
quite different distribution when compared with basic Rad-
Viz. By using the benchmark dataset ‘IRIS,’ we plot the
views obtained from the basic RadViz (RV ) and Rs and the
PolarViz (Rpolar) in Fig. 8a, c, f, respectively.

Compared with the radial equalization operation on the
basicRadViz result (Fig. 8b), Rs confuse themeaning ofRad-
Viz plot in the image space. Although Rs can significantly
solve the clumping problem in this case, the position rela-
tionship among data points in the image space is destroyed.
In Fig. 8c, the neighbors of the center point are not the nearest
data points to the center anymore. To better understand the
position change in these plots, we compare the data point
position difference between Rs and RV in Fig. 9a while
plotting the position difference between Rpolar and RV in
Fig. 9d. The position difference is calculated by considering
the Euclidean distance of same data point in different views.

For each comparison, the difference is normalized into the
interval of [0, 1] and then colorized accordingly. The color
of data point in Fig. 9a indicates that the position change in
Rs is irregular. Meanwhile, in Fig. 9d, a gradient ramp in
the radial direction can be observed which indicates a more
regular radial modification.

It does not mean that Rs is useless in data visualization, as
the design of Rs is to highlight the attributes with large val-
ues [26]. In this case, we consider Rs from two perspectives.
Firstly, we calculate the attribute value variance for each data
point in Rs and Rpolar (Fig. 9b, e). Secondly, we pay atten-
tion to the ratio of the largest attribute value to the attribute
mean for each data point (Fig. 9c, f). The attribute variance
and attribute ratio for each data point d j is calculated as
follows:

AttributeVariance =
√√√√1

n

n∑

i=0

(
di, j − d j

)2
(14)

AttributeRatio = max
{
di, j

}
,∀i

∑n
i=0 di, j

(15)
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Fig. 10 The basic RadViz (a), Rs (b), GFV with λGFV = 9 (c), and Rpolar (d) are used to plot the EngineSim dataset

where d j = 1

n

∑n
i=0 di, j . The basic RadViz plots the data

point which has small attribute variance near the center and
plots the data point with large attribute variance away from
the center. This character is preserved in Rpolar as shown
in Fig. 9e. It seems that the attribute variance in Rs is not
associated with that in Rpolar according to Fig. 9b. The main
property of Rs is that after using the sigmoid function to filter
the original dataset, the attribute with large values previously
will have larger results while small values will have smaller

results. Hence, we further calculate the ratio of the attribute
with largest value to the mean value in each data point. Rs

shows clear insight in Fig. 9c. Rs plots data points which
has largest values in attribute ‘SL’ and ‘SW’ near these two
DAs, respectively. The dots located between ‘PL’ and ‘PW’
indicate that these data points have two attributes with sim-
ilar values. Meanwhile, Rpolar in Fig. 9f cannot show this
information.
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Fig. 11 In (a), we plot the position difference of data points in Rs
(Fig. 10b) and basic RadViz RV (Fig. 10a). Then in (b) we compare
the position difference between Rpolar (Fig. 10d) and basic RadViz RV
(Fig. 10a)

6.1.2 NASA EngineSim

Another example is using the EngineSim simulation dataset.
Compared with ‘IRIS,’ there is no cluster label in the Engi-
neSim dataset. We plot the visualization result of RV , Rs ,
and Rpolar in Fig. 10a, b, d, respectively. As more data points
are involved in the EngineSim dataset, the result of Rs still
has many points crowded in the center region after the sig-
moid filtering. In this case, the advantage of Rpolar over Rs

is more obvious.

Fig. 12 We compare the transformation functions of the view in Fig. 8f
with Fig. 3

We also plot the position difference of these three plots
and the results are shown in Fig. 11. Similarly, like the result
in Fig. 11, the position change in Rs confuses the meaning
of RadViz plot.

6.2 Distortionmethods

Techniques that can be used to solve the clumping problem in
the image space, such as distortion methods (GFV and FET),
are also compared with the proposed PolarViz upon the two
datasets, the ‘IRIS’ and the EngineSim dataset. The results
of distortion methods on two datasets are plotted in Figs. 8d,
e and 10c, respectively.

Distortion methods are also operated along the radial
direction. Hence, they can produce similar results with the
PolarViz when dealing with the clumping problem. How-
ever, the major difference is that in the distortion methods
the transformation functions are fixed. Once the distortion
parameter is determined, the user cannot focus only on one
region while keeping other parts unchanged. The distortion
generated is hard to control in these distortionmethods, mak-
ing them difficult to meet the various requirements. Take the
result shown in Fig. 10c as an example. The center region is
too distorted, whilemost of the data points are pushed toward
the bounding circle. In this case, as the transformation func-
tion is fixed, the user cannot modify the view. In the contrast,
Rpolar has more space for the rest of data points while clearly
viewing the center region. The user can specify the distribu-
tion to satisfy the requirement. The transformation function
of Rpolar as well as those of distortion methods with different
parameters are plotted in Fig. 12.

The attribute variance, as well as the attribute ratio, are not
calculated in the comparison between distortionmethods and
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Table 2 The user study process
and the corresponding
questionnaire are described in
this table

User study Questionnaire

Introduce the RadViz plot by using
the spring-force model; then
using the equations in the
Cartesian coordinate system;
then using the equation in the
Polar coordinate system

Q1: Sort the description models
(the spring-force model, the
equations in the Cartesian
coordinate, and the equations in
the polar coordinate) of RadViz
from ‘easy-to-understand’ to
‘difficult-to-understand’

Introduce the clumping problem in
RadViz by using the Cartesian
coordinate system; then a polar
coordinate system

Q2: Sort the description models
(the Cartesian coordinate system
and the polar coordinate system)
of the clumping problem in
RadViz from
‘easy-to-understand’ to
‘difficult-to-understand’

Introduce the parameters of each
method (RadViz, Rs , GFV, FET,
and Rpolar)

Participants were asked to modify
the parameters of each method to
achieve a focus+context purpose

Q3: Sort the methods for the
clumping problem regarding
performance and operation
difficulty from easy to difficult

the PolarViz. The PolarViz and the distortion methods are
operated in the image space. Hence, they will not change the
original data values. The attribute variance and the attribute
ratio for each data point are persevered during plotting.

The amount of bins used in the radial operations is of great
importance. The more bins used, the more accurate the result
is. In Fig. 8b, f, when plotting the radial equalization result
and Rpolar, we use 1000 bins. Meanwhile, to better illustrate
the overlapping of different clusters, we use 40 bins in the
corresponding histograms.

7 User study

We performed a user study to assess the usability of the pro-
posed PolarViz. The user study was divided into two parts.
In the first part, participants in the user study were taught
somebackgroundknowledge about theRadViz, the clumping
problem, and the methods for solving the clumping problem.
In the second part, participants were asked to explore differ-
ent methods by themselves with a certain target and then sort
these methods based on the performance.

In the background knowledge introduction part, we first
introduced the RadViz plot by using the spring-force model
and then using equations in the Cartesian coordinate system
and then followed by equations in a polar coordinate system.
Secondly, we introduced the clumping problem in RadViz
by using the Cartesian coordinate system and a polar coor-
dinate system, respectively. Finally, we briefly introduced
the parameter of each method while keeping the theory of
all methods uninvolved. In the second part, three datasets

including the ‘IRIS’ dataset, the EngineSim dataset, and a
random dataset were used. We plotted the three datasets into
the basic RadViz and colorized the center point and its near-
est neighbors. The RadViz plot is used as a reference. We
then plotted the three datasets by using Rs , GFV, FET, and
Rpolar, respectively. Participants were asked to modify the
parameters of each method to achieve a focus+context pur-
pose. It requires a focus on the center region as well as a clear
view of the highlighted data points. Meanwhile, the pattern
of the rest should be preserved as much as possible. The user
study content is summarized in the left column of Table 2.

Fourteen graduate students and researcher staff (11male, 3
female) participated in our user study. None of them reported
to be familiar with information visualization before, and 11
of them reported to be familiar with the general spring-force
model as well as the equation expression, and 10 of them
knew about the fish-eye distortion. The average length of the
study was about 30 minutes as around 15 minutes were taken
for the background knowledge introduction. Three questions
were asked in the user study. In the first question, participants
were asked to sort the description models of RadViz from
‘easy-to-understand’ to ‘difficult-to-understand.’ In the sec-
ond question, participants were asked to sort the description
model of the clumping problem in RadViz from ‘easy-to-
understand’ to ‘difficult-to-understand.’ In the third question,
participants were asked to sort the methods for the clumping
problem regarding performance and operation difficulty. The
questionnaire is summarized in the right column of Table 2.
The overall opinion indicated that the proposed Rpolar over-
comes other methods. Specifically, the opinions for each
question are as follows:
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Q1: All the participants favored the spring-force model.
Thirteen of them mentioned that the equations of the
RadViz in the Cartesian coordinate are not difficult
to understand while only 1 participant supported the
equation expression in the polar coordinate rather than
the Cartesian coordinate. One reason is that using the
spring-force model to explain the RadViz plot makes
sense.Meanwhile, the evidence that most of the partici-
pants were familiar with the spring-force model as well
as the equation expression in the Cartesian coordinate
may be another reason.

Q2: Tenparticipants voted the clumpingproblemanalysis in
thepolar coordinate systemwhile 4participants thought
the analysis in the Cartesian coordinate system and in
the polar coordinate system are the same.

Q3: Eleven participants voted Rpolar as the easiest method
while 3 participants favored one of the distortion meth-
ods (GFV or FET). The reason why we put GFV and
FET together is that during the study, comments pro-
vided by some participants indicate that they failed to
find the difference between GFV and FET. Hence, we
treated the GFV and FET as one method. In this case,
Rpolar was 11 times in the first position and 3 times
in the second position. Meanwhile, the GFV or FET
methods were 3 times in the first position and 11 times
in the second position. The Rs was 14 times in the third
position which means that all the participants found it
difficult to meet the objective.

The user study results support the observation that the pro-
posed Rpolar, which uses the histogram to modify the radial
distribution, is easy to understand and provide more flexibil-
ity.

8 Discussion and conclusion

Regarding operation accuracy and computational perfor-
mance, the proposed PolarViz method not only has a strong
relationship with the dimensionality n and the total amount
of data points m, but also largely depends on the number
of bins L when doing digitization. To plot PolarViz, firstly
the high-dimensional dataset needs to be projected into a low
dimension space. The computational complexity of thismap-
ping is O (mn). Secondly, once we have the mapping result,
the complexity of digitization is O (m). Then no matter how
many data points we have, after digitization there are L bins.
Thirdly, for the radial operations, the complexity to handle
all these bins is O (L) and the complexity of re-plotting data
points is O (m). Hence, the total complexity of PolarViz is
O (mn + m + L + m). The value of n, m, and L will influ-
ence the final complexity of PolarViz.

Nevertheless, the proposed techniques have a limitation
that the current distortion is only focusingon the center region
of the plot. If the PolarViz is implemented in another region,
confusion on the plot understanding and radial operations
may arise.

In conclusion, this paper focuses on the clumping problem
of RadViz by providing a series of radial-related operations
to uncover hidden patterns and increases the space utiliza-
tion. We can manipulate the distribution of data points with
histogram by radial equalization and other radial specified
operations. The latter shows the flexibility of our technique
for different user requirements. Experimental results indicate
the advantage of the PolarViz. Compared with other meth-
ods, the PolarViz not only preserves the pros of RadViz but
also provides a flexible radial modification on the views.

Acknowledgements This work was conducted within the
Rolls-Royce@NTU Corporate Lab with support from the National
Research Foundation (NRF) Singapore under theCorpLab@University
Scheme. The work is largely extended from our CGI 2017 paper [38].

References

1. Albuquerque, G., Eisemann, M., Lehmann, D.J., Theisel, H., Mag-
nor,M.: Improving the visual analysis of high-dimensional datasets
using quality measures. In: IEEE Symposium on Visual Analytics
Science and Technology (VAST), 2010, pp. 19–26. IEEE (2010)

2. Artero, A.O., de Oliveira, M.C.F.: Viz3d: effective exploratory
visualization of large multidimensional data sets. In: Proceedings
of 17th Brazilian Symposium on Computer Graphics and Image
Processing, 2004, pp. 340–347. IEEE (2004)

3. Basu, A., Licardie, S.: Alternative models for fish-eye lenses. Pat-
tern Recognit. Lett. 16(4), 433–441 (1995)

4. Bertini, E., Santucci, G.: By chance is not enough: preserving rela-
tive density through nonuniform sampling. In: Proceedings of 8th
International Conference on Information Visualisation, 2004. IV
2004, pp. 622–629. IEEE (2004)

5. Chen, K., Liu, L.: iVIBRATE: interactive visualization-based
framework for clustering large datasets. ACM Trans. Inf. Syst.
(TOIS) 24(2), 245–294 (2006)

6. Daniels, K., Grinstein, G., Russell, A., Glidden, M.: Properties of
normalized radial visualizations. Inf. Vis. 11(4), 273–300 (2012)

7. Draper, G.M., Livnat, Y., Riesenfeld, R.F.: A survey of radial meth-
ods for information visualization. IEEETrans.Vis. Comput.Graph.
15(5), 759–776 (2009)

8. Ellis, G., Dix, A.: A taxonomy of clutter reduction for information
visualisation. IEEE Trans. Vis. Comput. Graph. 13(6), 1216–1223
(2007)

9. Fisher, R.A.: The use ofmultiplemeasurements in taxonomic prob-
lems. Ann. Eugen. 7(2), 179–188 (1936)

10. Heer, J., Shneiderman, B.: Interactive dynamics for visual analysis.
Queue 10(2), 30 (2012)

11. Hoffman, P., Grinstein, G., Marx, K., Grosse, I., Stanley, E.: DNA
visual and analytic data mining. In: Proceedings of Visualiza-
tion’97, pp. 437–441. IEEE (1997)

12. Hughes, C., Glavin, M., Jones, E., Denny, P.: Review of geometric
distortion compensation in fish-eye cameras. In: IET Conference
Proceedings, pp. 162–167. Institution of Engineering and Technol-
ogy (2008)

123



PolarViz: a discriminating visualization and visual analytics tool for high-dimensional data

13. Ibrahim, A., Rahnamayan, S., Martin, M.V., Deb, K.: 3D-RadVis:
visualization of Pareto front in many-objective optimization. In:
IEEE Congress on Evolutionary Computation (CEC), 2016, pp.
736–745. IEEE (2016)

14. Inselberg, A.: Parallel Coordinates. Springer, Berlin (2009)
15. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-

Hall, Inc., Upper Saddle River (1989)
16. Kadmon, N., Shlomi, E.: A polyfocal projection for statistical sur-

faces. Cartogr. J. 15(1), 36–41 (1978)
17. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–

1480 (1990)
18. Kruskal, J.B.: Multidimensional scaling by optimizing goodness

of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964)
19. Leung,Y.K.,Apperley,M.D.:A reviewand taxonomyof distortion-

oriented presentation techniques. ACM Trans. Comput. Hum.
Interact. (TOCHI) 1(2), 126–160 (1994)

20. Liu, S., Cui, W., Wu, Y., Liu, M.: A survey on information visu-
alization: recent advances and challenges. Vis. Comput. 30(12),
1373–1393 (2014)

21. Liu, S., Maljovec, D., Wang, B., Bremer, P.T., Pascucci, V.: Visu-
alizing high-dimensional data: advances in the past decade. IEEE
Trans. Vis. Comput. Graph. 23(3), 1249–1268 (2017)

22. Maaten, Lvd, Hinton, G.: Visualizing data using t-sne. J. Mach.
Learn. Res. 9, 2579–2605 (2008)

23. Mackinlay, J.D., Robertson, G.G., Card, S.K.: The perspective
wall: detail and context smoothly integrated. In: Proceedings of the
SIGCHIConference onHuman Factors in Computing Systems, pp.
173–176. ACM (1991)

24. NASA: Enginesim version 1.8a (2014). https://www.grc.nasa.gov/
www/k-12/airplane/ngnsim.html

25. Nováková, L., Štepanková, O.: Radviz and identification of clus-
ters in multidimensional data. In: 13th International Conference on
Information Visualisation, 2009, pp. 104–109. IEEE (2009)

26. Ono, J.H.P., Sikansi, F., Corrêa, D.C., Paulovich, F.V., Paiva, A.,
Nonato, L.G.: Concentric RadViz: visual exploration of multi-task
classification. In: 28th SIBGRAPI Conference on Graphics, Pat-
terns and Images (SIBGRAPI), 2015, pp. 165–172. IEEE (2015)

27. Packer, J.F., Hasan, M., Samavati, F.F.: Illustrative multilevel
focus+ context visualization along snaking paths. Vis. Comput.
33(10), 1291–1306 (2017)

28. Pearson, K.: LIII. On lines and planes of closest fit to systems of
points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11),
559–572 (1901)

29. Pryke, A., Mostaghim, S., Nazemi, A.: Heatmap visualization
of population based multi objective algorithms. In: International
Conference on Evolutionary Multi-Criterion Optimization, pp.
361–375. Springer (2007)

30. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by
locally linear embedding. Science 290(5500), 2323–2326 (2000)

31. Rubio-Sánchez, M., Raya, L., Diaz, F., Sanchez, A.: A compara-
tive study between radviz and star coordinates. IEEE Trans. Vis.
Comput. Graph. 22(1), 619–628 (2016)

32. Russell, A., Daniels, K., Grinstein, G.: Voronoi diagram based
dimensional anchor assessment for radial visualizations. In: 16th
International Conference on Information Visualisation, 2012, pp.
229–233. IEEE (2012)

33. Russell, A., Marceau, R., Kamayou, F., Daniels, K., Grinstein, G.:
Clustered data separation via barycentric radial visualization. In:
Proceedings of the International Conference on Modeling, Sim-
ulation and Visualization Methods (MSV), p. 1. The Steering
Committee of theWorld Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp) (2014)

34. Sarkar, M., Brown, M.H.: Graphical fisheye views of graphs. In:
Proceedings of the SIGCHIConference onHuman Factors in Com-
puting Systems, pp. 83–91. ACM (1992)

35. Sharko, J., Grinstein, G., Marx, K.A.: Vectorized radviz and its
application to multiple cluster datasets. IEEE Trans. Vis. Comput.
Graph. 14(6), 1427–1444 (2008)

36. Spence, R., Apperley, M.: Data base navigation: an office environ-
ment for the professional. Behav. Inf. Technol. 1(1), 43–54 (1982)

37. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geo-
metric framework for nonlinear dimensionality reduction. Science
290(5500), 2319–2323 (2000)

38. Wang, Y.C., Zhang, Q., Lin, F., Goh, C.K., Wang, X., Seah, H.S.:
Histogram equalization and specification for high-dimensional
data visualization using RadViz. In: Proceedings of the Computer
Graphics International Conference, CGI ’17, pp. 15:1–15:6. ACM
(2017)

39. Zhou, F., Huang, W., Li, J., Huang, Y., Shi, Y., Zhao, Y.: Extend-
ing dimensions in RadViz based on mean shift. In: IEEE Pacific
Visualization Symposium (PacificVis), 2015, pp. 111–115. IEEE
(2015)

123

https://www.grc.nasa.gov/www/k-12/airplane/ngnsim.html
https://www.grc.nasa.gov/www/k-12/airplane/ngnsim.html

	PolarViz: a discriminating visualization and visual analytics tool for high-dimensional data
	Abstract
	1 Introduction
	2 Related work
	2.1 Dimensionality reduction
	2.2 RadViz
	2.3 Distortion-oriented approaches

	3 Main problems to be solved
	3.1 Clumping problem in RadViz
	3.2 Previous approach for clumping problem

	4 Proposed approach
	4.1 Formulation in polar coordinate
	4.2 Visual analytics in polar coordinate

	5 Detailed methods
	5.1 Radial operations
	5.1.1 Radial equalization
	5.1.2 Radial specification
	5.1.3 Radial movement
	5.1.4 Radial local equalization

	5.2 PolarViz

	6 Comparative studies
	6.1 RadViz with sigmoid function
	6.1.1 Iris
	6.1.2 NASA EngineSim

	6.2 Distortion methods

	7 User study
	8 Discussion and conclusion
	Acknowledgements
	References




